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Abstract

This paper examines the unequal error protection capabilities of convolutional

codes. Both time-invariant and periodically time-varying convolutional encoders are

examined. The effective free distance vector is defined and is shown to be useful in

determining the unequal error protection (UEP) capabilities of convolutional codes.

A modified transfer function is used to determine an upper bound on the bit error

probabilities for individual input bit positions in a convolutional encoder. The bound

is heavily dependent on the individual effective free distance of the input bit position.

A bound relating two individual effective free distances is presented. The bound is a

useful tool in determining the maximum possible disparity in individual effective free

distances of encoders of specified rate and memory distribution. The unequal error pro-

tection capabilities of convolutional encoders of several rates and memory distributions

are determined and discussed.
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1 Introduction

In conventional channel coding applications, it is assumed that the input symbols to the

channel are equally likely and that the code provides essentially equal error probability to

each bit. However, in some applications, certain bit position(s) in the information stream

are more important than others. For example, the sign bit and high order bits of pulse coded

modulation (PCM) data are more critical to system performance than the lower order bits

[1]. In packet switched networks, the header information requires more error protection than

the data; and in multi-user environments, some users may require more error protection than

others. In mobile communications, due to severe constraints imposed by the channel, hybrid

modulation is needed to guarantee reliable transmission and in addition provides unequal

error protection to the data being transmitted [2]. Systems in which some information is

non-essential enhancement information, e.g. embedded coding schemes and high definition

television (HDTV), are also potential application environments. Encoders which provide

more than one level of error protection to information bits are called unequal error protection

(UEP) encoders.

Since the introduction of linear unequal error protection (LUEP) codes by lVlasnick

and Wolf [1], many researchers have derived new results for classes of linear block codes

with unequal error protection for single positions in co&words or for single positions in the

input information digits. These classes of codes consist of nonsystematic cyclic UEP codes

[2], codes derived from difference sets [3], iterative and concatenated designs of UEP codes

[4],cyclic code classes [5], and LUEP codes derived from shorter codes [6].

In this paper, we examine the unequal error protection capabilities of convolutional

codes by presenting classes of convolutional codes which satisfy the basic property of UEP

codes, that is, provide unequal error protection for each input infoemation digit. The new

classes contain both time-invariant convolutional codes (TICC) and periodically time-varying

convolutional codes (PTVCC).

The work done in [1]-[7] established the existence of systematic procedures for the

construction of LUEP block codes. Those methods used either the generator matrix or

the parity-check matrix for code construction with an assumed optimal decoding method,

typically majority logic decoding.

In contrast with the previous LUEP block codes, the UEP convolutional encoders pre-

sented in this paper lack algebraic structure. For that reason, good encoders are found

by a computer search procedure. The assumed decoding method is Viterbi decoding for

short-constraint-lengths, or sequential decoding for long constraint-lengths.

The paper is organized as follows. In Section 2, convolutional codes are briefly reviewed.

In Section 3, the effective free distance vector is presented as an alternative parameter to the

free distance for determining the UEP capabilities on encoders. Section 4, discusses classes of

convolutional codes which satisfy the UEP property. Section 5 presents a modified transfer

function from which the UEP capabilities of an encoder can be calculated. A method to
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Example 1 Consider the rate r = 2/3 convolutional encoder with M = (1,2), K = 3, and

encoding matrices

[101].o,__[011][000]Go= 0 1 1 ' 0 0 1 ;G2= 1 0 1

This encoder is shown in Fig. 2. The free distance is 4.

An (n, k, m) periodically time-varying convolutional encoder with period P can be rep-

resented by the encoding equation

v,- u,G u,_,Gi')"e.. (5)
where (t)e denotes the value of t modulo P, and the encoding matrices _,C'-{t)P, i = 0, 1, ..., m,

are (k × n) binary matrices. It is assumed that the non-zero input occurs at time 0. For

example, the periodically time-varying convolutional encoder with period 2 and encoding

matrices

= 0 1 0 ; = 1 1 0

G(°l)= [ 0 1 1]0 0 0 "GP)= [ 1 1 0]0 0 1

produces the code sequence

v = (111 101 001 001 101 100...)

for the input sequence

u = (10 11 01 01 11 10...).

3 The Effective Free Distance Vector

It is convenient to define an effective free distance vector, doff, as an alternative to the free

distance as a primary performance parameter for the linear unequal error protection codes.

The performance criterion based on the effective free distance vector is equivalent to the

separation vector concept of (n, k) linear codes introduced by Dunning and Robbins [7].

Similar vectors have been proposed in [14], [15], [8], [9], [10], [25].

Definition 1 For an (n, k, m), k _ 1, time-invariant convolutional encoder, and an (n, k, m)

periodically time-varying convolutional encoder, the effective free distance vector is defined

as the k-dimensional vector

deff(C) = (d,,d2, ...... ,dk) (6)
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The non-zero path through the trellis with weight 3 is shown by dotted lines. The non-zero

paths with weight 4 are shown with dark lines. All other paths have weight greater than 4.

It can be seen that the weight 3 path is created by an input vector sequence that is non-zero

only in the first input bit position, (01 00). When the input sequences are non-zero in the

second position, the minimum weight of any path is 4.

It is important to recognize that the first "1" in the j-th position does not necessarily

occur at time zero. For instance, the input sequence 10, 01,00 is one of the sequences that

must be considered when determining the second effective free distance, dl, of an encoder

with two input lines (k = 2), and M = (1, 1). The input sequence 10, 10,00 need not be

considered when determining dx.

It should be noted that the effective free distance vector is dependent on the encoder

realization of a code. An example that demonstrates the dependence follows.

Example 3 The encoder described in Example 2 and the encoder shown in Figure 5 with

encoding matrices

Go= I 1 1 1 0 1 (9)

are different realizations of the same code. Figure 6 shows the trellis for the encoder in

Figure 5. It can be seen that the effective free distance vector for the encoder in this example

is deft = (3,3), which differs from the effective distance vector of the equivalent encoder

realization discussed in Example 2.

4 Classes of UEP Convolutional Codes

We begin this section by restricting the class of convolutional encoders that can be used as

UEP codes.

Theorem 2 An (n, 1, m) time-invariant binary convolutional encoder can not provide un-

equal error protection.

Proof. Consider an (n, 1, m) convolutional encoder with its corresponding trellis diagram.

Since the code is linear, without loss of any generality, assume the all zero sequence is

transmitted. A decoding error occurs at time t = k if there exists a path diverging from the

correct path at time k or prior to it and reemerging later. Let d = {do, dz,d2, ...... } be the

ordered set of Hamming weights of all paths satisfying the above decoding error.

Now, assume that a decoding error occurs at time t = k' with k _ ¢ k. Let d' =

{ d_, d_, d_, ...... } be the ordered set of Hamming weights of all paths that diverged at or

prior to k' and reemerged later.

Since the underlying Markov process is stationary, the statistics associated with the

error event at time t = k and t = k' are the same. Therefore, the sets d and d' are equal

and any information digit has the same free distance.D
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will be described and used to develop an upper bound on the average bit error probability for

a specific input bit position. A method to calculate the modified transfer function for time-

varying and time-invariant encoders is described. Finally, several examples are presented.

5.1 A modified transfer function

The standard two-variable transfer function [11] has the form

T(X,Y) = _ _ Ab,d.Xd.y b. (10)
d=dlree b=l

The average bit error probability for a specific transfer function is bounded by

d

where Ba = _b b.Ab,e is the total number of non-zero information bits associated with all

codewords of weight d, and Pe (¢4p(1 p))d= -- = D _, where D is the Bhattacharyya

function [22]. For the sake of simplicity, we assume a binary symmetric channel with crossover

probability p.

When the individual bit error probability is desired for each of the k input positions,

then the split-state diagram must be modified before Mason's formula is applied. Each
branch label has the new form

Xiyjo y13, vJ',-_...... • k-, , (1"2_)

where jt is equal to the input bit in the l-th position, and i is the Hamming weight of the

branch output. Obviously, the sum of the jt's is the Hamming weight of the input vector.

The transfer function is then calculated. The resulting modified transfer function is

oo Jd

T(X, Yo, Y_, ..,Yk-,) _ _" vdvb°'_v_l'J Vb*-"_"" = t'd,j "_x 1o 11 "'" ""k-x , (13)

d=dlree j=l

where Cd,j is the number of paths associated with the j-th input sequence distribution of

l's that generates code vectors of weight d, ja is the number of distinct input sequence

distributions that generate code vectors of weight d, and the entity bo,j, bl,j, ...... , bk-l,j repre-

sents a particular input sequence distribution of l's. The bound for the individual bit error

probabilities is then

P}i)(E) < _ B_iI.Pd, for 0 < i < k- 1, (14)
d

where P(bi)(E) is the probability that a bit located in the i-th position of the input vector

is decoded incorrectly, and B_ i} Jd= _.i=1 bi,j.Ca,j is the total number of l's in bit position

i contained in all input vectors that generate code vectors of weight d. Note that the
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It is assumed that the discrete-time evolution of these systems follows the following

pattern: system L1 (convolutional encoder) is on in the time interval i < k < i + 1 and

system L2 (convolutional encoder) is on in the time interval i + 1 _< k < i + 2, for any i, i

an integer. It can be shown that the combination of these two linear systems (convolutional

encoders) results in a linear system (convoIutional encoder).

The state and output equations of the resulting linear system can be described math-

ematically with the previous state and output equations, by the following reasoning: the

states _1 (c2) belonging to system LÀ (L2), at time t = k + 1 can be reached from the states

c2 (¢1) belonging to system L2 (L1) at time t = k, by applying the transition matrix A1 (A2),

corresponding to system L1 (L2), or from the initial condition matrix B1 (B2); the output

equation T1 (T2) of system L1 (L2) is obtained by multiplying the output condition matrix

C1 (C2) by the state matrix ¢2 (ca) of system L2 (L_).

Mathematically,

{ ¢_(k + 1) = At(k)._2(k)+ B_(k)
System L1 ¢==_ (18)

T_(k) = C1(]¢).c2(_)

¢2(k + 1)= A2(Jc).gl(k)+ B2(k)
System L2 _ (19)

T2(]¢ ) = 62(_).61(]c)

The total output equation is

T(k) = Tl(k) + T2(k)

Solving the equations for el(k) and ¢2(k), we have

(20)

el = (I- AIA2)-'(A1B2 + BI)

c2 = A2(I- A,A2)-a(A_B2 + B1) + B2

The modified transfer function of System 1 is

(21)

TI(X, Yo,...,Yk-I) = C, A2(I- A, A2)-'(A, B2 + B_) + B2, (22)

the modified transfer function of System 2 is

T2(X, Yo,...,Yj,-_) = C2(I- A,A2)-I(A, B2 + B,), (23)

and the overall modified transfer function is

T(X, Yo,..., Yk-,) = C1A2(I- AxA2)-'(A, B2 + B1) + C1B2 + C2(I- A1A2)-'(A1B2 + B,)

(24)
The system matrices for each convolutional encoder are easily determined from the

split-state diagram. Let a_(i,j) be the element of AI in row i and column j, b_(i) be the
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A2= XYo XYo ;B2= ;C2= [ X 2 X X 3 ]

X2YoY_ XYoY_ XYoY_ X2YoY_

Using these matrices in (24), we determine that the transfer function is

T( X, Yo, Y_ ) = 2X_Yo+ X2Yo: + X3YoY, + X4YI + 2X4YoY_ + X4Yo2 + X4Yo3 + 2X4I/o2Yx + X4Yo3YI + ....

(26)

Then, the average probability of a bit error in position 0 is

p_0) _< 4P.2 -+-P3 + 14P4 + ....

Similarly, the average bit error for the second input position is

P}') < P3 + 6P4 + ....

Therefore, deft = (2, 3). Finally, the overall average bit error rate is

1 pb(1)Pb(E) = 1p(O) + < 2P2 + P3 + 10/:)4 +
2 b _ - ...

Example 5 Now consider the time-invariant case by assuming that system L1 is the only

system.

The previous results may be used to determine the transfer function by setting A2 = A1,

B2 = B1, and C2 = Cx in (24). The total transfer function T is then

T = 2C1(I -- A1)-IB1 (27)

Evaluating (27), we have

T = X3y0+

X4(2YoY, + Yo2 + Yo2Y,2)+

X S(Yo + 3 Yo Y } + 3Yo2Yx + Yo3 + 3YoaY} + 2Yo2Y13 ÷ Yo4Y13)+

Then, the bounds on the individual bit error probabilities are

and

p(O) _<P3 + 6P4...,

P_') _ 4P4 + ....

Therefore, deft = (3,4). We remind the reader that the encoder in this example is the

same encoder discussed in Example 2. The transfer function indicates that there is one code

sequence of Hamming weight 3 which is generated by an input sequence with one 1 in the
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6 Bounds

In this section, a bound on the individual effective free distances for time-invariant convo-

lutional encoders is derived. Evaluating the bound is a useful tool in identifying encoder

configurations which possess potential UEP capabilities. In addition, it allows a comparison

between the effective free distance of a specific encoder and the theoretically optimal effective

free distance. First, a bound on the Hamming weight of the sum of two vectors with known

Hamming weights is presented. Then this bound is applied to effective free distances and

the implications are discussed.

Let x and y be n-bit binary vectors and let z be the modulo 2 sum of x and y,

=xGy

= (xl ® Yl, x2 ® y_, ...... ,x,_ _ y,_)

Assume that the Hamming weights ofx and y are known and are w_ and w_, respectively.

It can be shown that the Hamming weight of z is upper bounded by the following relationship

w_ _< min{n - wx, w_} + min {n - w_,wx). (29)

The proof of the bound in (29) is given below.

There are two cases which result in zi = 1 and which contribute to the Hamming weight

of z. Case 1 occurs when xi is 1 and yi is 0; Case 2 occurs when xi is 0 and yi is 1. The

Hamming weight of z is equal to the total number of bit positions in which either of the two

cases appears. Therefore, w_ can be upper bounded by the sum of the maximum number of
occurrences of Case 1 and the maximum number of occurrences of Case 2. The number of

bit positions in which Case I occurs can be no greater than the minimum of the number of

1 's in x and the number of 0's in y. Similarly, the number of bit positions in which Case 2

occurs can be no greater than the minimum of the number of 0's in x and the number of l's

in y. Therefore,

w_ < min{n-w_,w_} +min{n-wu,w, } . (30)

The bound in (29) can be applied to a convolutional encoder and provides the basis for

a bound on the effective free distance of a particular input line as a function of the effective
free distance of another line.

Recall that a rate R = kin convolutional encoder with input (message) sequence u =

(u0, ul, ...... ), code sequence v = (v0, va, ...... ), and memory distribution M = (too, rnl,. ..... , ink-l),

with m0 < rnl < ...... < ink-l, can be represented by the equation

vj = Uj.Go G uj-I.G1 (_ ...... (_ Uj-mk_l .Gmk_l, (31)

where ui is a binary k-tuple, vi is a binary n-tuple, and Gi is a (k X n) binary matrix.

Recall that the concatenated encoding matrix, G, is the concatenation of the matrices Gi,

0 < i < mk__, i.e., G = [GolGxl-" IG,,__I].

PA(lg. BtJ_
%" .. [ 2_r. :,,!: :", I_YT _.t_gt,
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line j. The original encoder has the encoder matrix

G = GolG, I'" IG_k_,]

ro

rl

rk-i

(38)

(39)

Using the appropriate periodic input sequences, we can form two vectors

e, =!r,lr,j...Iq
b times

(40)

and

r'j = !rjlrjl2.. Ir,!,

c times

which are valid code sequences.
]

' = WH(r'i) = bwi and wj = wH(rtj) = Cwj.Note that w i

effective free distance,

dj < wH(r'i • r'j).

Let g = nmax[b(mi + 1),c(mj + 1)]. From the vector bound in (29),

wH(r'ier'j) <_ min{N-wl,w}}

+ min {N - w_,w:}.

(41)

From the definition of the

(42)

(43)

(44)

So,

d, < min {N - w:, w}}

{ '}+min N-w},w i

_< [N - w:] + [N - w;]

= 2N-w:-w;.

(45)

(46)

(47)

(48)

Rewriting,

dj + w; + w'i <_ 2N (49)

or

d.i + bwi + cw.i <_ 2N.

Since dj < wj and di <_ wi, the bound can be loosened to

bdi + (c + 1)dj <_ 2N = 2nmax[b(mi + 1), c(mj + 1)]

(50)

(51)

P._G_" Bk_.t_ NOT FN,,MED
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in the first do positions.

0 < do - [_] to ensure that do is the effective distanceSituation a) implies than sj _
0 is obviously upperbounded by n(mj + 1) - do, By definition,of row 0. In addition, yj

dj <_ wH(rowj _ rowO) and wH(rowj G rowO) = sj + yj, so

o o (54)dj < sj + yj.

o and yO, we obtainUsing the upper bounds for sj

dj < (do- [_l) + =(mj + 1)-do. (55)

Simplifying,
./

dj + F_l < ,_(mj

Allowing j = 1 and defining X1 = F_l, we have

+ 1). (56)

dl + X1 < n(ml --b 1) (57)

for j= 1,...,k-1.

Because l° is the number of l's in the first do positions, and situation b) assumes that

there are at least I-_] O's in those positions, Situation b) implies that do - [_-] > lj >_ O.

Also, because the Hamming weight of row j is no less than dj,

dj __ lj + yj (58)

It then follows that

which simplifies to

dj <_ do -- F_l + n(mj + I) -do, (59)

,4.

dj + [21 ____(mj + 1). (6o)

We are now left with a residual block code of rate k-1 with a row weight vector,
n(mk_ 1 +l)-do

w >_ (wx - (do - X1),...,wj - (do - X1),...,wk-x - (do - X1)) , and an effective distance

vector d = (d_,...,d_,...,d_:_l). Repeating the procedure, we rearrange the columns so
that the first row has only ones in the first wx - (w0 - Xx) positions, and only zeros in

the remaining n(mk-1) -- do - (wl - (do - X1)) = n(mk-x) - wa - X1 positions. Then for

j = 2,..., k - 1, the portion of the original row j that belongs to the residual code can have

either: a) _> [,o,-(_-x,)] l's or b) > [_,-(_-xo] O's in the first w_ - (do - X1) positions.
I be the number of l's in the last n(mj + 1) -Again, more variables are defined. Let yj

] be the number of l's in the first wl - (do - X1)do - (wx - (do - XI)) positions of row j, sj

positions of row j $ row 1, and lj be the number of l's in the first wl - (do - X1) positions

of row j.
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When the non-zero input to a convolutional encoder has length h, the encoder can be consid-

ered as a block code with 2 hk codewords of length h(mk-1 + 1). Therefore, the free distance

of the code may be upperbounded [29] by

ds_ c < n(mk-1 + h) 2 hk- 2 2 hk - l'h = 1,2,.... (67)

The effective distance for a specific input line, j, is the minimum Hamming weight

among codewords that are associated with inputs that contain at least one 1 on that input

line. A code generated by the inputs of length h which have at least one 1 on line j is called

the restricted block code, C_. The set of such inputs and outputs may be considered as a

series of block codes, similar to the approach used for the Plotkin bound. We define C_ as

the number of codewords in the restricted block code C_. Then, C_ is equal to the total
number of codewords in the unrestricted block code with the same size input vectors minus

the number of codewords that are all-zero on line j, or

C h = 2 hk -- 2 h(k-1) (68)

or

C) = 2h(k-1)(2 h -- 1).

Then, using the bound in (67), dj is upper-bounded by

(69)

dj < n(mk__ + h) 2h(k-x)(2h -- _ h = 1,2, ....
- 2 2h(k-1-----'5(2---_-- i i 1'

(70)

for j = 0,..., k - 1. Note that each effective distance is subject to the same bounding value,

i.e., the bound is independent of j.

9 Results

A non-exhaustive search for encoders that provide unequal error protection was conducted.

The notation used for the encoding matrices is as follows. For each Gi, the rows are given

in octal representation, aand are separated by commas. For instance, an entry of 370,037 in

the column labeled Go means that the first row of Go is 11 111 000 and the second row is 00

011 111. The notation yl indicates that octal digit y appears in 1 consecutive places in the

row. For example, the entry 5273 represents a row equal to 55777 = 101 101 111 111 111.

Tables 1 and 2 give the result for rate 2/3 and rate 2/4 encoders, respectively. A primary

goal of the searches was to find encoders with at least one effective distance greater than

the free distance of the optimal encoder of the same rate and memory order. A decrease

in free distance is acceptable. In Table 1, there are four instances in which the higher

effective free distance is larger than the optimal free distance for rate 2/3 encoders with the

same state complexity. For M = (1, 1), deft = (3,4) , and df_e = 3 for the time-invariant

convolutional encoder, and dfr_ = 4 for the time-varying convolutional encoder as shown in
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5, 6,7, and 8 are good UEP encoders in the sense that they have the best (lexicographically)

effective free distance vector among the encoders with the same rate and state complexity.

These encoders were found by a heuristic search procedure with its main goal being that of

finding only the best effective free distance vector. An algorithm [16] was later developed to

find similar codes. We show in Table 9 two examples of the disparity between the components

of the effective free distance vector of PTVCC with period 2. The first example shows

encoders with rate r = 1/2, and memory rn = 4, and the second example shows encoders

with rate r = 1/2, and rn = 7.

Bit error rate simulations were performed to verify that the effective free distance is

an appropriate measure of the UEP capabilities of an encoder. Figures 8 and 9 show the

bit error rate (BER) plots for the R = 2/3, M = (2,2) encoder with deft = (4,6) and the

R = 2/4, M = (1,2) encoder with d = (6,7), respectively, using Viterbi decoding with

soft decision decoding. Three sets of data points are shown in each plot. The data points

described by the 'x' are the (simulated) bit error rate for input line 0. Similarly, the data

points described by the 'o' are the (simulated) bit error rate for input line 1. The overall

BERs are marked by '*'s. For cases in which BER was lower than 10 -7, data points do not

appear. It is seen that the lower BER for a specific signal to noise ratio (SNR) is achieved by

the input position with the larger effective free distance. That is, the effective free distance

is a valid indication of the UEP capabilities of the encoders.

10 Conclusions

This paper discussed the unequal error protection capabilities of time-invariant and time-

varying convolutional encoders. The effective free distance vector was defined as the perfor-

mance parameter of interest, and a method to calculate the modified transfer function, and

therefore the effective free distance vector, of an encoder was presented. An upper bound

on the effective free distance vector for time-invariant encoders was derived. The bound is

not tight in all cases, but it provides a quick method to evaluate if unequal error protec-

tion is possible for specific encoder configurations before searches are performed. Results of

computer searches for encoders which provide unequal error protection were listed. Typi-

cally, an increase in the effective free distance of one position is accompanied by a reduction

in the effective free distance of another position, relative to the free distance of the opti-

mal encoder. However, a number of encoders that maintain the optimal free distance while

providing unequal error protection were found.

PAGE BkANK h_T FN.MF.t)



REFERENCES 24

[14]

[15]

[16]

[17]

[18]

[19]

[2o]

[21]

[22]

[23]

[24]

R. Palazzo, Jr., "On the linear unequal error protection convolutional codes," IEEE

Global Telecommunications Conference, Dec. 1986.

R. Palazzo, Jr., "Linear unequal error protection convolutional codes," IEEE Intl. Syrup.

on Inform. Theory, Brighton, England, 1985.

R. Palazzo, Jr., and R. C. F. Cruz, "A new search algorithm for good unequal error

protection convolutional codes," Proceedings of the Intl. Syrup. on Signals, Systems,

and Electronics - URSL Germany, 1989.

R. Palazzo, Jr., "An upper bound on the average distortion measure of cyclostationary

sequences via dynamic programming," Proceedings of the Intl. Syrup. on Operational

Research, Porto Alegre, Brazil, 1986.

R. Palazzo, Jr., and K. V. O. Fonseca, "Periodically time-varying trellis coded modula-

tion," Proceedings of the Intl. Symp. on Inform. and Coding Theory, Campinas, Brazil,
1987.

R. Palazzo, Jr., and K. V. O. Fonseca, "Unequal error protection of superlinear time-

varying trellis coded modulation," Proceedings of the 4-th Joint Sweden-USSR Intl

Workshop on Inform. Theory, Visby, Sweden, 1989.

R. Palazzo, Jr., "A time-varying convolutional encoder better than the best time-

invariant encoder," IEEE Trans. Inform. Theory, vol.IT-30, pp. 1109-1110, May 1993.

R. Palazzo, Jr., "A network flow approach to convolutional codes," IEEE Trans. Com-

mun., submitted for publication Sept. 1993.

A. J. Viterbi, and J. K. Omura, Principles of Digital Communications and Coding,

MacGraw-Hill, 1979.

J. K. Omura, and M. K. Simon, "Generalized transfer function techniques," Jet Propul-

sion Laboratories Technical Report, 1981.

A. Shiozaki, "Unequal error protection of PCM signals by self-orthogonal convolutional

codes," IEEE Trans. on Commun., vol.COM-, pp. , .

[25] P. Piret, Convolutional Codes: An Al9ebraic Approach, Cambridge, Mass. MIT-Press,

1988.

[26]

[27]

J. M. Wozencraft, and I. M. Jacobs, Principles of Communication Engineering, John

Wiley & Sons, 1965.

M. E. Hellman, and J. Raviv, "Probability of error, equivocation, and the Chernoff

bound," IEEE Trans. Inform. Theory, vol.IT-16, pp. 368-372, July 1970.

P%_i_iI)W_J_ PAGE _LAI_,C NOT PII,,,IVi:'O



11 TABLES 26

- 11 Tables

Rate r--2/3

M. Alloc. Bound

M do I dl

11 (1,1) [3 4

(1,2) 4 6

3 6

(1,3) 5 7

4 8

(1,4) 5 9

4 9

(2,2) 5 6

4 6

(2,3) 6 7
5 8

4 8

Optimal

d/tee I Effect. Free Dist.dell

3 (3,4)

4 ] (4,5)4 (3,5)

5 [ (5,5)5 (4,6)
6

6 (5,6)(4,6)

5 I (5,5)5 (4,6)
6 (6,6)
6 (5,6)
6 (4,6)

Encoding Matrices

CoI c, I I 1
]3,612,51 ] ]
5,3 3,1 0,5

2,5 3,7 0,5

3,4 7,6 0,7 0,5

6,3 3,7 0,5 0,4

7,5 5,1 0,3 0,3

3,5 5,1 0,7 0,2

5,3 4,5 6,3

1,7 5,2 1,6

5,3 7,1 3,5 0,5

1,3 5,2 6,1 0,3

4,0 2,3 5,1 0,7

0,6

0,6

Table 1" Time-Invariant UEP Encoders

- j ,** ....



11 TABLES 28

Unit Memory Encoders

Rate Encoding Matrices Eft. Free Dist. Free Dist.

k/n Go gl &I/ ds_o_

2/5 31,26 25,33 (6,7) 6

2/8 370,037 174,237 (10, 11) 10

2/11 3163, 1755 1077, 3760 (14, 15) 14

2/14 37700, 03477 37760, 01777 (18, 19) 18

2/17 003777, 377700 201777, 177760 (22, 23) 22

2/20 3777600, 0017777 0777740,3007777 (26, 27) 26

Table 3: Time-Invariant UEP Encoders
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11 TABLES 30

Memory Elements m -- 2

Period 2

Rate

k/n

1/4
1/7
1/lO
1/13
1/16
_/19
1/2_

Encoding Matrices

Encoderl

5272

5374

5476

Encoder2

573

Eft. Free Dist.

deft

(10,11)

Free Dist.

d free

10

5275 (18,19) 18

5377 26

557 s 5479

55711

(26,27)

(34,35) 34
(42,43) 42
(50,51) 50
(58,59) 58

56713

58714 57715

Table 5: Time-Varying UEP Encoders
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11 TABLES 32

II Memory Elements m = 3 II

[[ Period 2 I

Rate

,k/n
1/S
1/11

Encoding Matrices

Encoderl Encoder2

112 , 13 2, 174 133 , 15 3, 17 2

13 4, 15 3, 174 11,13 4 , 153 , 17 3

Eft. Free Dist. Free Dist.

d free

(26,27) 26

(36,37) 36

.o

Rate

k/n

I[1/2

Memory Elements m=3

dfr_e = 16

Period 3

Encoding Matrices

Encoderl Encoder2 Encoder3

[ 13 2 , 15, '17_ Ii,13,15,17 2 13 2, 15 2, 17

Eft. Free Dist. Vector

d_fl

(16,16,17)

Table 7: Time-Varying UEP Encoders
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11 TABLES 34

I Memory Elements m -- 4 H

] optimal = 7 II
[[ Period 2 H

Encoding Matrices Eft. Free Dist.Rate

k/n

1/2
1/2
1/2
1/2
1/2
1/2
i/2
1/2
1/2

Encoder l Encoder2

23,35 31,31 (5,6)

23,35 37,31 (5,7)

23,35 33,33 (6,7)

23,35 35,37 (6,8)

23,35 37,23 (7,7)

23,35 37,25 (7,8)

23,35 27,27 (7,8)

23,35 27,35 (7,8)

23,35 35,35 (7,8)

II Memory Elements m--7 ]

11 optimaldsre_= i0 H

11 Period 2 il

Encoding Matrices Eft. Free Dist.

Encoderl Encoder2 d_]]

247,371 247,357 (8,9)

247, (8,10)

247, (8,10)

247, (8,12)

247, (9,9)

247, (9,10)

247, (9,10)

247, (10,10)

Rate

k/n

i/2
i/2
1/2
1/2
1/2

1/2
1/2
i/2
i/2 247,

371 247,373

371 247,377

371 353,333

371 331,331

371 331,353

371 331,357

371 331,333

371 247,333 (i0,II)

Table 9: Time-varying UEP encoders
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Figure 2: A Specific (3, 2, 2) Convolutional encoder

Figure 3: A specific (3, 2) encoder
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Figure 6: Trellis for a specific (3, 2) encoder
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Figure 8: BER plot for n = 2/3. M = (2.2) encoder with d = (4.6)
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Figure 9: BER plot for R = 2/4, M = (1,2) encoder with d = (6, 7)
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